



# "Countering the Threat: Regulating Illicit Nuclear Arms Trade for Global Stability"

Presented by Harine Raaj

8th Annual SYP Conference

Masters Student in International Relations at University of Manchester.

# Introduction

- Nuclear weapons are a major threat to global stability, with illicit arms trading and trafficking continuing despite international efforts to curb (Klare, 2023).
- Treaties exist with the aim to regulate nuclear weapons but have not fully prevented the illicit transfer of nuclear materials and technology.
- The International Atomic Energy Agency (IAEA, 2007) monitors and enforces nuclear safeguards, but challenges in enforcement and access persist.





### **2025 ESTIMATED GLOBAL NUCLEAR WARHEAD INVENTORIES**

The world's nuclear-armed states possess a combined total of over 12,400 nuclear warheads; nearly 90% belong to Russia and the United States. Approximately 9,700 warheads are in military service, with the rest awaiting dismantlement.



Association

Source: Federation of American Scientists, U.S. Department of State, U.S. Department of Energy, U.S. Department of Defense, and the Stockholm International Peace Research Institute. Updated: January 2025

### **Objectives**

Analyze the weaknesses in the current global non-proliferation framework and enforcement mechanisms.

**Highlight key case studies** that illustrate past failures in preventing illicit nuclear trade.

**Propose practical solutions,** including enhanced cooperation, technology-driven tracking methods, and stronger regulatory measures to counteract nuclear smuggling for better global stability.



## The Current Challenges in Preventing Illicit Nuclear Trade

| Treaty                                                                  | Objective                                                                                                         | Strengths                                                                                                                                                                                      | Limitations                                                                                                                                                                                                         |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Non-Proliferation Treaty<br>(NPT) (1968)                                | Prevents the spread of<br>nuclear weapons while<br>promoting peaceful nuclear<br>energy.                          | <ul> <li>Establishes a global framework<br/>for nuclear arms control.</li> <li>Provides a verification<br/>mechanism through the<br/>International Atomic Energy<br/>Agency (IAEA).</li> </ul> | <ul> <li>Lacks strict enforcement<br/>mechanisms.</li> <li>Countries can withdraw (e.g.,<br/>North Korea, 2003).</li> <li>Non-state actors (terrorist<br/>groups, illicit networks) are not<br/>covered.</li> </ul> |
| Treaty on the Prohibition<br>of Nuclear Weapons<br>(TPNW) (2017)        | Calls for the complete<br>elimination of nuclear<br>weapons, including their<br>testing, stockpiling, and<br>use. | <ul> <li>First legally binding international agreement to ban nuclear weapons entirely.</li> <li>Recognized by the UN General Assembly.</li> </ul>                                             | <ul> <li>Major nuclear states (U.S.,<br/>Russia, China, UK, France) have<br/>not signed or ratified the treaty.</li> <li>No enforcement mechanisms or<br/>penalties for violations.</li> </ul>                      |
| Strategic Arms<br>Reduction Treaties<br>(START I, II, and New<br>START) | Limits and reduces the number of nuclear warheads and delivery systems between the <b>U.S. and Russia</b> .       | <ul> <li>Helped significantly reduce<br/>nuclear stockpiles.</li> <li>Includes verification measures<br/>to monitor compliance.</li> </ul>                                                     | <ul> <li>Focuses only on state actors<br/>(ignores illicit trade and non-state<br/>proliferation).</li> <li>New START's future is<br/>uncertain due to Russia</li> </ul>                                            |

suspending participation in 2023.

### **Key Loopholes in Enforcement and Verification:**

| Issue                                     | Details                                                                                                                                                                   | Example                                                                                                                       |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Lack of<br>Enforcement<br>Mechanisms      | Most nuclear treaties rely on voluntary compliance<br>without strict penalties. The IAEA lacks enforcement<br>power, and the UN Security Council is often slow to<br>act. | North Korea withdrew from the NPT in 2003, conducted nuclear tests, and faced only gradual sanctions.                         |
| Challenges in<br>Monitoring<br>Compliance | Nations resist intrusive inspections, and the IAEA's access to key sites is often limited or delayed.                                                                     | Iran restricts access to nuclear facilities, complicating IAEA inspections.                                                   |
| Dual-Use<br>Technologies                  | Technologies with both civilian and military uses are difficult to regulate, and smugglers exploit legal loopholes.                                                       | Uranium enrichment centrifuges and<br>plutonium reprocessing can be used for<br>both nuclear power and weapons<br>production. |

# **Case Studies**



#### The A.Q. Khan Network (Pakistan, 1970s-2000s)

- Abdul Qadeer Khan, a Pakistani scientist, illegally transferred nuclear technology to countries including North Korea, Iran, and Libya.
- Used clandestine smuggling networks, front companies, and black-market dealers to bypass restrictions.
- Impact:
  - Strengthened nuclear capabilities of rogue states.
  - Revealed major loopholes in global export controls and intelligence-sharing.
  - Led to stronger non-proliferation efforts but highlighted ongoing vulnerabilities.

Post-Soviet Nuclear Smuggling (Dadayan Case, 1990s–2000s)

- After the Soviet Union collapsed, many nuclear materials and weapons-grade uranium were left unguarded.
- In 2003, Armenian arms dealer Georgi
   Dadayan attempted to sell highly enriched uranium on the black market.
- Impact:
  - Showed the dangers of unsecured nuclear stockpiles.
  - Highlighted the need for better tracking and security of nuclear materials in unstable regions.

## Patterns & Key Lessons from These Cases

- Weak enforcement mechanisms allowed both cases to persist for years before being detected.
- Lack of **real-time intelligence-sharing** across borders helped traffickers evade capture.
- Nuclear-related materials were obtained through legal loopholes and dual-use technologies that were later diverted for illicit purposes.



### **Policy Recommendations**

1. Strengthening International Cooperation (IAEA 2007, p.40)

- Improving intelligence-sharing among nuclear states.
- Establishing unified enforcement efforts against illegal trade networks.

#### 2. Expanding the IAEA's Authority (IAEA 2007, p.85)

- Granting real-time inspection and audit capabilities.
- Enabling stronger sanctions for non-compliance.
- 3. Leveraging Technology for Tracking & Security
  - Blockchain for Nuclear Material Tracking: Creating tamper-proof records of movements.
  - Al and Cybersecurity Measures: Preventing cyber attacks on nuclear facilities.
- 4. Tightening Export Controls on Dual-Use Technologies (IAEA 2007, p.15)
  - Stricter licensing for sensitive materials to prevent illicit diversions.
  - Increasing oversight of high-risk transfers.

#### 5. Regional Anti-Trafficking Hubs

- Setting up specialized centers in high-risk regions.
- Enhancing training, surveillance, and intelligence-sharing.



# Thankyou

# Bibliography

International Atomic Energy Agency (IAEA) (2007) Combating illicit trafficking in nuclear and other radioactive material. Nuclear Security Series No. 6. Vienna: IAEA.

Klare, M. T. (2023) 'Assessing the dangers: emerging military technologies and nuclear (in)stability', Arms Control Association Report.

MacCalman, M. (2016) 'A.Q. Khan nuclear smuggling network', *Journal of Strategic Security*, 9(1), Article 9.

Treaty on the Prohibition of Nuclear Weapons (2017) 'Treaty on the Prohibition of Nuclear Weapons'.

United States Department of State. (2010). *New START Treaty*. (8 April 2010). Available at:https://anteportas.pl/wp-content/uploads/2018/08/AP.IV\_Ursu.pdf.

Ursu, D. (2015) 'Illicit trafficking of nuclear and radioactive material in Eastern Europe', Ante Portas – Studia nad Bezpieczeństwem, 1(4).